Vision-based navigation through urban canyons
نویسندگان
چکیده
We address the problem of navigating unmanned vehicles safely through urban canyons in two dimensions using only vision-based techniques. Two commonly used vision-based obstacle avoidance techniques (namely stereo vision and optic flow) are implemented on an aerial and a ground-based robotic platform and evaluated for urban canyon navigation. Optic flow is evaluated for its ability to produce a centering response between obstacles, and stereo vision is evaluated for detecting obstacles to the front. We also evaluate a combination of these two techniques, which allows a vehicle to detect obstacles to the front while remaining centered between obstacles to the side. Through experiments on an unmanned ground vehicle and in simulation, this combination is shown to be beneficial for navigating urban canyons, including T-junctions and 90-deg bends. Experiments on a rotorcraft unmanned aerial vehicle, which was constrained to two-dimensional flight, demonstrate that stereo vision allowed it to detect an obstacle to the front, and optic flow allowed it to turn away from obstacles to the side. We discuss the theory behind these techniques, our experience in implementing them on the robotic platforms, and their suitability to the urban canyon navigation problem. C © 2009 Wiley Periodicals, Inc.
منابع مشابه
Robust positioning of drones for land use monitoring in strong terrain relief using vision-based navigation
For land use monitoring, the main problems are robust positioning in urban canyons and strong terrain reliefs with the use of GPS system only. Indeed, satellite signal reflection and shielding in urban canyons and strong terrain relief results in problems with correct positioning. Using GNSS-RTK does not solve the problem completely because in some complex situations the whole satellite's syste...
متن کاملInvestigation of dissipation flow in the urban Canyon
With the wind permanent flow in the cities, obtaining the minimal pollution in the environment is accessible. Different policies have been considered for optimization of cities such as attachment and or reduction of building parts like air-traps, ceiling forms and so on. Due to population growth in cities and the increasing need for resettlement these people in the cities, inevitably, to the hi...
متن کاملImproving the Reliability of GPS and GLONASS Navigation Solution in Urban Canyons using a Tuned Kalman Filter
Abstract: Urban canyon is categorized as hard environment for positioning of a dynamic vehicle due to low number and also bad configuration of in-view satellites. In this paper, a tuning procedure is proposed to adjust the important factors in Kalman Filter (KF) using Genetic Algorithm (GA). The authors tested the algorithm on a dynamic vehicle in an urban canyon with hard condition and compare...
متن کاملThree Dimensional Positioning with Two GNSS Satellites and DSRC for Vehicles in Urban Canyons
Limited availability of the Global Navigation Satellite System (GNSS) signals in urban canyons is a preventive factor for implementing many position-based systems. Specifically for vehicles, a variety of applications such as Intelligent Transportation Systems (ITS), navigation, and Location-Based Services (LBS) are not properly functional in dense urban areas due to constrained visibility of th...
متن کاملPassive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Field Robotics
دوره 26 شماره
صفحات -
تاریخ انتشار 2009